Atypical processing in domain III of 23S rRNA of Rhizobium leguminosarum ATCC 10004(T) at a position homologous to an rRNA fragmentation site in protozoa.

نویسندگان

  • Franziska Klein
  • Regina Samorski
  • Gabriele Klug
  • Elena Evguenieva-Hackenberg
چکیده

For still unknown reasons, the 23S rRNA of many alpha-Proteobacteria shows a unique fragmentation pattern compared to other bacteria. The 23S rRNA processing involves RNase III and additional, yet unidentified enzymes. The alpha-proteobacterium Rhizobium leguminosarum ATCC 10004(T) possesses two fragmentation sites in its 23S rRNA. The first one harbors an intervening sequence in helix 9 which is cleaved by RNase III. We demonstrate that the mature 5' end of the resulting 2.6-kb rRNA fragment is generated by additional removal of helix 10. A fraction of the 2.6-kb rRNA is further processed in domain III, giving rise to two 1.3-kb rRNA fragments. We mapped the domain III fragmentation site and found it to be at a position which has only been reported for trypanosomatid protozoa. This fragmentation site is also unique in that it lacks an intervening sequence. We found that the simultaneous occurrence of 2.6-kb and 1.3-kb rRNA fragments is not due to interoperonal sequence differences but rather reflects slow processing. The different characteristics of the two fragmentation sites in the 23S rRNA suggest that they are processed by different mechanisms. Interestingly, the amount of 2.6-kb rRNA varies during culture growth. We observed a transient increase in the relative amount of 2.6-kb rRNA fragments during the first hours after inoculation, which points to changes in the ratio of rRNA synthesis rate to domain III processing rate during the growth of a culture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different cleavage specificities of RNases III from Rhodobacter capsulatus and Escherichia coli.

23S rRNA in Rhodobacter capsulatus shows endoribonuclease III (RNase III)-dependent fragmentation in vivo at a unique extra stem-loop extending from position 1271 to 1331. RNase III is a double strand (ds)-specific endoribonuclease. This substrate preference is mediated by a double-stranded RNA binding domain (dsRBD) within the protein. Although a certain degree of double strandedness is a prer...

متن کامل

Detection of A2142C, A2142G, and A2143G Mutations in 23s rRNA Gene Conferring Resistance to Clarithromycin among Helicobacter pylori Isolates in Kerman, Iran

Background: Clarithromycin resistance in Helicbacter pylori has been found to be associated with point mutations in 23s rRNA gene leads to reduced affinity of the antibiotic to its ribosomal target or changing the site of methylation. The aim of this study was to determine the most important point mutations in 23s rRNA gene in H. pylori that are closely related to clarith-romycin resistance amo...

متن کامل

RNase III processing of intervening sequences found in helix 9 of 23S rRNA in the alpha subclass of Proteobacteria.

We provide experimental evidence for RNase III-dependent processing in helix 9 of the 23S rRNA as a general feature of many species in the alpha subclass of Proteobacteria (alpha-Proteobacteria). We investigated 12 Rhodobacter, Rhizobium, Sinorhizobium, Rhodopseudomonas, and Bartonella strains. The processed region is characterized by the presence of intervening sequences (IVSs). The 23S rDNA s...

متن کامل

Genetic variations of avian Pasteurella multocida as demonstrated by 16S-23S rRNA gene sequences comparison

Pasteurella multocida is known as an important heterogenic bacterial agent causes some severe diseases such as fowl cholera in poultry and haemorrhagic septicaemia in cattle and buffalo. A polymerase chain reaction (PCR) assay was developed using primers derived from conserved part of 16S-23S rRNA gene. The PCR amplified a fragment size of 0.7 kb using DNA from nine avian P. multocida  isolates...

متن کامل

Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum.

The genetic structure of a population of nonsymbiotic Rhizobium leguminosarum strains was determined by the electrophoretic mobilities of eight metabolic enzymes. Nonsymbiotic strains were isolated from the rhizosphere of bean plants and characterized by growth on differential media and at different temperatures, intrinsic antibiotic resistance, the lack of homology to a nifH probe, and their i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 184 12  شماره 

صفحات  -

تاریخ انتشار 2002